水素吸蔵超軽量ハイエントロピー合金の研究開発

北海道大学 大学院工学研究院材料科学部門 **礒部 繁人**

1. はじめに

世界的なカーボンニュートラルへの傾倒と SDGs への取り組みを背景に, 効果的かつ効率的 なエネルギー利用に資する金属材料軽量化のニーズは益々高まると予想される。金属材料の軽 量化は,Al や Mg などをベースとした合金設計が王道であり,その研究開発の実績は言うに 及ばない。一方,ハイエントロピー合金(以下,HEA)の研究開発は比較的歴史が浅いため未 踏の領域も多く,軽量 HEA も殆ど未開拓だと言える。HEA は,従来の希薄合金と異なり主構 成元素がなく、等モル比に近い割合の複数元素(主に5種類以上)から構成される。そのため HEA は、配置エントロピーが大きくなり熱力学的に固溶体が安定に存在し、従来の希薄合金 では出現しない特異な物性を有すると考えられている ¹)-6。 そこで,申請者は HEA の設計 思想を基に軽量 HEA の実現可能性を示すべく, Li, Mg, Al, Ti の 4 元素をベースにメカニカ ルアロイング法による合金作製を検討した。メカニカルアロイング法では溶解法による合金作 製に比べて,強制固溶による非平衡相を作製しやすい。その結果,4元系では HCP 構造の単 相固溶体が, V を加えた 5 元系では BCC 構造の単相固溶体がそれぞれ作製できた。この 5 元 系 BCC 型軽量 HEA の水素吸蔵特性を調査したところ, 比較的よく水素を吸蔵し得ることが分 かった。当該材料は,H/M(ホスト原子数に対する水素原子数の比)がそれほど高くない一方 で密度が低いために水素吸蔵量が比較的大きい。材料の作製条件をさらに検討することで、 H/Mは、他のBCC型水素吸蔵合金と同レベルまで高められることが期待できるため、水素吸 蔵量はさらに大きく開発できると考えられる。そこで本研究の具体的な目的を, 密度 3g/cm³程 度で5wt.%以上の水素吸蔵能を有する軽量HEAを創ることとした。

2. 国内外における類似の研究

前述の通り、軽量 HEA の水素吸蔵合金への応用に関する研究報告は殆ど無いが、HEA の設計思想を従来の水素吸蔵合金へ応用した例を以下に挙げる。2016 年 Sahlberg らが、BCC 系 HEA である TiVZrNbHf 合金の不規則単相固溶体 BCC 相が水素吸蔵に伴って BCT 相へ変化することを示し、その水素吸蔵量が H/M=2.5 に相当する 2.7wt.%に達することを報告した $^{7)}$ 。この大きな水素吸蔵量について、彼らは HEA 特有の格子ひずみに起因すると考察しており、構成元素の種類を変えることで、さらに大きな水素吸蔵量の HEA を開発できる可能性があるとしている。また、Nygård らは、Ti を含む四元系、五元系 HEA の水素吸蔵特性について系統的に調査した $^{8)}$ 。特に、VEC の値に着目し、水素吸蔵量および水素放出開始温度と VEC に相関があることを見出した。VEC が大きいほど水素吸蔵量 (H/M) は小さく、水素放出開始温度は低くなる傾向を実験的に示した。そして、調査した合金の中では、TiVCrNbH8 が水素吸蔵材料をして最適であると結論付けた $^{8)}$ 。この他にも、Nygård らは、シンクロトロン放射光粉末 X 線回折測定により水素吸蔵 HEA $(TiVZrNbTa \ {\ \ }$ の局所格子ひずみについて調査し、H/M の値とひずみ量に相関がないことを報告している 9 。これは、Sahlberg らの報告にあ

る「格子ひずみによる水素量の増大に関する考察」と一致しないため、今後さらなる精査が必要であると考えられ、現在も水素吸蔵 HEA に関する論文報告が活発な状況である。ただし、これらの HEA の構成元素の多くは遷移金属であるため、水素重量密度が低い。従って、「BCC系水素吸蔵 HEA の革新的な低密度化を目指した研究」が本研究の位置づけの一つとも言える。

3. 研究の方法及び内容

研究対象は軽金属元素をメインで構成する多成分系とする。具体的には、Li, Na, K, Mg, Ca, Al, Ti, Sc, V, etc から、5 成分以上を選定する。まず、これまでの知見に基づき、Li-Mg-Al-Ti-V の 5 元系合金をベースとして、理論密度と単相固溶体安定性の観点から各元素の組成を変えた 20 種類以上の合金を設計した。これらの合金を試作する前に、構成元素の組み合わせおよび組成について、混合のエンタルピー $\Delta H_{\rm mix}$ 、混合のエントロピー $\Delta S_{\rm mix}$ の此 Q,原子半径差 δ ,電気陰性度差 $\Delta \chi$,価電子濃度 VEC 等のパラメータを精査し、固溶体形成可能性との相関を調査した 10 。また、設計した合金を、XRD、XRF、SEM-EDS により評価し、結晶相の同定、組成の評価、単相組織の評価を行う。諸特性の評価として、密度測定、熱伝導率測定、電気伝導率測定、ヴィッカース硬度測定、引張試験等を実施した。また、機能性の評価として水素吸蔵放出特性評価を行った。更に、水素吸蔵後の試料に対して固体NMR 測定を行い、各元素(特に H, Li, Al)の化学結合状態を評価した。なお、作製する合金系は大気中で取り扱うと容易に酸化するため、不活性ガス循環精製システム付グローブボックスや大気非暴露トランスファーベッセル等を用いて試料の酸化を極力抑制した。

試料設計・作製

・メカニカルアロイング法(MA法)による合金作製

条件:高エネルギーボールミリング

400~1200 rpm 1~100 時間 -196 ℃ (液体窒素温度) ~ 室温, アルゴンガス雰囲気, 水素ガス雰囲気

・ホットプレスによる焼結体作製

グローブボックス内に設置した油圧プレスと加熱用プレス金型を用いて,合金粉末を押し固め 焼結体に成型した。

試料評価

- ・XRF, SEM-EDS, STEM-EELSによる組成分析および組織観察・元素マッピング
- ·XRD による結晶構造解析
- ・ヴィッカース硬度、引張試験などによる機械的特性評価
- 熱伝導率測定, 電気伝導率測定
- ・水素圧力下での DSC 測定, PCT 測定による水素吸蔵放出特性評価
- ・固体 NMR による各元素の化学結合状態評価

以上の多角的実験アプローチにより、軽量 HEA 構成元素の形成条件のパラメータがそれぞれどのような値になるとき、固溶体形成しうるかを明らかにし、軽量 HEA の設計指針を作成した 10 。更に、創製した軽量 HEA の水素吸蔵特性を精査することで、その応用可能性を明らかにした。

4. 結果と考察

本研究における合金組成は、単相固溶体を形成した報告のある $LiMg_{0.5}AlScTi_{1.5}$ を参考にし、非常に高価な元素である Sc を除外した Li-Mg-Al-Ti 系を基本とした。5 元系 HEA としては等原子比の LiMgAlTiM (M=V, Cr, Ni, Cu, Nb, Sn) 及び非等原子比 Li-Mg-Al-Ti-V 系,Li-Mg-Al-Ti-Nb 系,Li-Mg-Al-Ti-Nb 系,Li-Mg-Al-Ti-Nb 系 においては軽量化のために非等原子比の 3 元系,4 元系,5 元系試料も作製した。その詳細な理論組成を $Table\ 1$ に示す。

Tabel 1 作製した試料の理論組成割合

作製試料	割合 (at.%)				
組成	Li	Mg	Al	Ti	M
LiMgATi	25	25	25	25	
LiMgAlTiV	20	20	20	20	V (20)
LiMgAlTiNb	20	20	20	20	Nb (20)
LiMgATiCu	20	20	20	20	Cu (20)
LiMgATiSn	20	20	20	20	Sn (20)
LiMgATiCr	20	20	20	20	Cr (20)
LiMgATiNi	20	20	20	20	Ni (20)
Li ₅ Mg ₅ Al ₃₀ Ti ₃₀ V ₃₀	5	5	30	30	V (30)
Li ₈ Mg ₈ Al ₂₈ Ti ₂₈ V ₂₈	8	8	28	28	V (28)
Li ₈ Mg ₈ Al ₂₈ Ti ₂₈ Nb ₂₈	8	8	28	28	Nb (28)
Li ₈ Mg ₈ Al ₂₈ Ti ₂₈ Zr ₂₈	8	8	28	28	Zr (28)
AlTiV	_	_	33.3	33.3	V (33.3)
Li ₄ Mg ₄ Al _{30.7} Ti _{30.7} V _{30.7}	4	4	30.7	30.7	V (30.7)
Li ₁₀ Mg ₁₀ Al _{26.7} Ti _{26.7} V _{26.7}	10	10	26.7	26.7	V (26.7)
Li ₁₂ Mg ₁₂ Al _{25.3} Ti _{25.3} V _{25.3}	12	12	25.3	25.3	V (25.3)
Li ₅ Al _{31.7} Ti _{31.7} V _{31.7}	5		31.7	31.7	V (31.7)
Li ₁₀ Al ₃₀ Ti ₃₀ V ₃₀	10		30	30	V (30)
Li ₁₅ Al _{28.3} Ti _{28.3} V _{28.3}	15		28.3	28.3	V (28.3)
Li ₂₀ Al _{26.7} Ti _{26.7} V _{26.7}	20		26.7	26.7	V (26.7)
LiAlTiV	25		25	25	V (25)
AlTiNb			33.3	33.3	Nb (33.3)
Li ₄ Mg ₄ Al _{30.7} Ti _{30.7} Nb _{30.7}	4	4	30.7	30.7	Nb (30.7)
Li ₁₀ Mg ₁₀ Al _{26.7} Ti _{26.7} Nb _{26.7}	10	10	26.7	26.7	Nb (26.7)
Li ₁₂ Mg ₁₂ Al _{25.3} Ti _{25.3} Nb _{25.3}	12	12	25.3	25.3	Nb (25.3)
Li ₅ Al _{31.7} Ti _{31.7} Nb _{31.7}	5		31.7	31.7	Nb (31.7)
Li ₁₀ Al ₃₀ Ti ₃₀ Nb ₃₀	10		30	30	Nb (30)
Li ₁₅ Al _{28.3} Ti _{28.3} Nb _{28.3}	15		28.3	28.3	Nb (28.3)
Li ₂₀ Al _{26.7} Ti _{26.7} Nb _{26.7}	20		26.7	26.7	Nb (26.7)
LiAlTiNb	25		25	25	Nb (25)
Mg10Al30Ti30Nb30		10	30	30	Nb (30)
Mg ₁₅ Al _{28.3} Ti _{28.3} Nb _{28.3}		15	28.3	28.3	Nb (28.3)
Mg ₂₀ Al _{26.7} Ti _{26.7} Nb _{26.7}		20	26.7	26.7	Nb (26.7)
11252011120./11020./				i	

5 元素目を添加する前の 4 元系 LiMgAlTi について,TG-DTA-MS 測定を実施した。4 元系合金では約 300 $^{\circ}$ $^{\circ$

次に、5元系の LiMgAlTiM について、試料を作製し諸特性を評価した。LiMgAlTi の 4 元系では HCP 単相であったが、LiMgAlTiM は元素 M によって結晶構造が異なり、大きく以下の 4 種類に分類されることが明らかになった。元素 M が全く混ざらなかった非混和のグループ、金属間化合物を形成したグループ、結晶性に乏しく結晶構造の判別が行えなかったグループ、そして単相ではないものの固溶体を形成したグループである。本実験では、非混和のグループ、金属間化合物を形成したグループに該当する試料を 1 種類ずつ、そして結晶性に乏しく結晶構造の判別が行えなかったグループ、固溶体を形成したグループに該当する試料を 2 種類作製した。そして、全ての試料に対して、ジーベルツ型装置で、水素圧 3.0MPa、保持温度 200°C、保持時間 5h で水素化を行った。その後、TG-DTA-MS を用いて 1He 1D に本実験で得られた水素放出量、1MRD の結果をまとめたものを示す。

5 元素	水素放出量	H/M	H/M(XRD から計算)	XRD (グループ)
目	(wt.%)			
なし	0.25	0.07	0.05~0.08	固溶体(HCP)
Cr	0	0	_	非混和
Cu	0	0	_	判別不可
Sn	0	0	_	金属間化合物
Ni	0.67	0.23	_	判別不可
V	1.88	0.60	0.73~1.09	固溶体(BCC)+Li-Mg 相
Nb	1.40	0.56	0.75~1.13	固溶体(BCC)+Li-Mg 相

Table 2 LiMgAlTiMの水素放出量と XRD 結果まとめ

4元系の時と比べて、5元素目として Cr, Cu, Sn を加えた時は水素放出せず、水素吸蔵前後の XRD ではピークシフトも見られなかった。このことから、これらの元素を 5 元素目として加えると水素吸放出特性が低下することがわかった。一方、5 元素目として Ni, V, Nb を加えたとき、水素放出量は向上した。特に、V, Nb を加えた 5 元系は、水素吸蔵前後の XRD のピークシフトから計算した H/M も 4 元系の時と比べて高くなっていることから、これらの元素を 5 元素目として加えると水素吸放出特性は向上することがわかった。加えた 5 元素目による水素吸放出の影響について、4 元系合金の結果をもとに考える。非混和に分類される M=Cr の場合、先行研究 10)での組織分析と XRD の結果から、Cr は固溶せず、他の 4 元素も混合されず 4 元系合金の HCP 相は観測されなかった。Cr は水素の固溶エンタルピーが高く水素のとの親和

性が低いため水素を吸蔵せず、4元系合金と比べて水素吸放出特性が低下したのだと考えられ る。M=Cuの場合,XRDの結果からアモルファスであるため,水素固溶しやすいサイトが4元 系の時(HCP)と比べて少ないと考えられる。M=Sn の場合, $SnMg_2$ の金属間化合物が生じ, その金属間化合物が水素を吸放出しなかったため,4元系合金と比べて水素吸放出特性が低下 したと考えられる。M=Ni の場合, 4元系の HCP の低角側のピークと Ni のピーク, アモルフ ァスのような不明なピークが存在している。不明なピークが HCP のピークの位置と似ている ことから 4 元系に Ni がうまく固溶していないでできた相であると仮定する。すると,4 元系 由来の水素吸放出特性を持ちながら,合金の表面に水素が触れて水素原子に乖離する際の活性 化エネルギーを下げる触媒的な効果を Ni は持っているため, 4 元系の時と比べて水素吸放出 特性が向上したのだと考えられる。M=V, Nb の場合は,どちらも結晶構造が HCP から BCC に 変化した。この結晶構造の変化によって,単位格子中の水素の吸蔵サイトが2個から6個に増 えたため, 固溶した水素吸蔵量が増加し, 水素吸放出特性が向上したと考えられる。ここで, V, Nb を 5 元素目として加えた際に XRD のピークシフトから求めた H/M と TG-DTA-MS の結 果から求めた H/M に違いが生じたことについて考える。この違いが生じた主な原因としては, TG-DTA-MS で放出過程が途中のまま測定を終了したことが考えられる。これにより TG-DTA-MS から求めた H/M は吸蔵された水素の一部を反映してない数値になり、XRD から計算した H/M とずれが生じたと考えられる。また,測定が 350℃で終了した後も,試料を He フローの 状態で保持して350℃から室温まで冷却したため、この間に残存する水素が完全に放出されて、 XRD では BM 後と同じ格子定数にまで縮小されたと推察される。

作製した合金試料の中で、単相固溶体であることが分かった $\text{Li}_8\text{Mg}_8\text{Al}_{28}\text{Ti}_{28}\text{Nb}_{28}$ について、PCT 測定を実施した。結果、室温での最大水素吸蔵量は H/M=0.68 (1.36 wt.%) であり、明確なプラトー領域が観られなかった。また、同試料に対する XRD の結果から $\text{Li}_8\text{Mg}_8\text{Al}_{28}\text{Ti}_{28}\text{Nb}_{28}$ は PCT 前後で BCC 構造を示し、水素の固溶に起因する低角側へのピークシフトが観測された。PCT 測定後の $\text{Li}_8\text{Mg}_8\text{Al}_{28}\text{Ti}_{28}\text{Nb}_{28}$ における重水素の固体 NMR 測定を実施した。結果、吸蔵された水素の化学状態は 2 種類存在し、①XRD では検出が困難な Li や Mg の微小水素化物クラスターと②Ti や Nb 周りに固溶する水素であることが確認された。

5. まとめ

本研究では、Li-Mg-Al-Ti を基本組成系として 5 元素目に様々な金属元素を加えて軽量 HEA を作製し、その水素吸放出特性評価を行うことで以下の知見が得られた。

- ・LiMgAlTi に対して, 5元素目として等原子比で Cr, Cu, Sn を加えると 4元系合金と比べて水素吸放出特性が低下し, Ni, Nb, V を加えると水素吸放出特性が向上する。
- ・250℃において LiMgAlTiV は H/M=0.76 (2.43wt.%) の水素を吸蔵し、H/M=0.38(1.21wt.%) の水素吸放出をする。そして、水素吸放出の過程で Li-Mg 相が分解され、不可逆的な水素吸放出を行う。

- ・Li $_8$ Mg $_8$ Al $_{28}$ Ti $_{28}$ Nb $_{28}$ は室温で H/M=0.68(1.38wt.%)の水素を吸蔵する。その際の、水素の吸蔵状態としては、LiH and/or MgH2 水素化物クラスターと Ti,Nb に固溶している水素の 2 種類が存在する。
- ・ $\text{Li}_8\text{Mg}_8\text{Al}_{28}\text{Ti}_{28}\text{Nb}_{28}$ は吸蔵した水素を、低温側(120 $^{\circ}$ $^{\circ}$ ~210 $^{\circ}$)と高温側(210 $^{\circ}$ ~350 $^{\circ}$)の 2 つの温度域で放出しており、低温側では LiH 水素化物から一部水素を放出している。
- ・Li₈Mg₈Al₂₈Ti₂₈V₂₈ は Li₈Mg₈Al₂₈Ti₂₈Nb₂₈と似た水素吸放出特性を示し,室温で H/M=0.52 (1.38wt.%)の水素を吸蔵し,吸蔵した水素を低温側 (80℃~180℃)と高温側 (230℃~400℃)の2つの温度域で放出する。
- ・格子定数の観点から Li-Mg-Al-Ti-Nb 系における、Li の固溶量を算出することは困難であり、Li+Mg の割合が増加すると Li-Mg 相が析出する。

謝辞

本研究を遂行するにあたり,公益財団法人天野工業技術研究所から多大なご支援を頂きました。ここに記して謝意を示します。

参考文献

- 1) J.-W. Yeh, et al. Advanced Engineering Materials 6, 299-303 (2004)
- 2) B. Cantor, et al. Materials Science and Engineering, A. 375-377, 213-218 (2004)
- 3) 乾晴行, ハイエントロピー合金 カクテル効果が生み出す多彩な新物性, 内田老鶴圃, 2020
- 4) 永瀬 丈嗣ら, 鋳造工学, 2019 年 91 巻 10 号 p.717-729
- 5) X. Yang, S.Y. Chen, J.D. Cotton, Y. Zhang, JOM 66, 2009-2020 (2014)
- 6) 新学術領域研究「ミルフィーユ構造の材料科学」https://www.mfs-materials.jp/
- 7) M. Sahlberg, et al, Sci. Rep, 6, 36770 (2016)
- 8) Nygård MM, et al., Acta Mater., 175, 121(2019)
- 9) Nygård MM, et al., Int J Hydrogen Energy, 44, 29140 (2019)
- 10) H. Hashimoto, S. Isobe, N. Hashimoto, H. Oka, Journal of Alloys and Metallurgical Systems 4 (2023).