次世代型航空宇宙推進システム:デトネーションエンジンの 主要課題である燃焼過程の不完全性の原因解明

京都大学 工学研究科機械理工学専攻

岩田 和也

1. はじめに

デトネーションエンジンは、従来のロケットエンジンなどと異なり超音速の火炎(デトネーション)を用いることで、熱効率の向上、およびエンジンの小型軽量化を図ることが可能とされる¹⁾。名古屋大学のグループ²⁾が世界初の宇宙飛行実証を成功させるなど、研究開発が活発な一方で、理論と異なる燃焼の挙動のため、予想された性能の向上に至っていない。このような燃焼過程の不完全性は、燃焼室内の不完全な混合や乱流流れ場の効果が考慮されていないためであることが申請者らの先行研究で示された³⁾。申請者は共同研究者とともに不完全混合の影響を数値計算および実験によって検証してきた^{4,5)}。本研究ではこの研究を発展させ、総括当量比を変化させるとともに、乱流流れ場の影響も含めた研究を行うことを目的とする。

2. 乱流流れ場の中を伝播するデトネーション:スパコン「富岳」を用いた大規模シミュレー ション

スパコン「富岳」若手課題である「乱流場におけるデトネーション波の燃焼ダイナミクス に関する超大規模直接数値計算」の枠組みのもと、10億計算格子クラスの大規模シミュレー ションによって、乱流場が導入された場合のデトネーション物理を調べた。本成果は Proceedings of the Combustion Institute に採択されている⁶。図1に示すような3次元直方体の モデルを採用した。メッシュサイズは流れ方向に2 µm,スパン方向に4 µm とすることで、 乱流の最小スケール,およびデトネーション波の反応誘起距離の両方を十分に解像できるよ うに設定した。対流項の計算の際は5次精度のWENO⁷⁾によって保存量の内挿を行い、流束 の計算には HLLC と Lax-Friedrich を衝撃波近傍か否かで切り替えることによって行った。粘 性項は2次精度中心差分によって計算した。化学反応項は Conaire⁸⁾による9化学種 19素反応 の詳細反応を取り入れた。

表1.計算条件

Case	Re_{λ}	Ma_t
1	-	-
2	140	0.17
3	360	0.34
4	360	0.51

乱流場に関する計算条件は表1にまとめる通りである。Case1のみは乱流の無い条件であり、全てのケースに共通し、圧力40kPaの2H₂-O₂混合気を対象にした。テイラースケールレイノルズ数 Re₂は140,360の2種類,乱流マッハ数 Ma_tは0.17,0.34,0.51の3種類である。

図 2. 乱流場中を伝播するデトネーションの構造

図2に得られたデトネーションの3次元構造を示す。半透明の面が衝撃波、赤い面が火炎 を表し、スパン方向端面には密度分布を示している。Case1の乱流場が存在しない場合で は、「セル構造」を形成する横波と呼ばれる衝撃波が、主となる垂直衝撃波に対して沿う方向 (y, z 方向)に伝播しており、両方向に 2 波長分が含まれるような周期的な構造を呈している。 それに対し、Case 2、Case 3 では比較的弱い乱流であり、横波による周期的なセル構造パタ ーンは Case1 と同様に健在である。ただ、Case 3 ではこの衝撃波面の凹凸が激しく、ランダ ムに乱れる様子が顕著である。最も強い乱流場となる Case 4 ではこの周期的なパターンが完 全に崩壊している。このようなセル構造の崩壊はエンジン内の可視化実験の知見 ³⁾と合致し た結果であり、エンジン性能低下につながることが報告されていることから、重要な新規の 知見といえる。

このようなセル構造の崩壊に関しては、崩壊に至るメカニズム、崩壊した場合の伝播を維持するメカニズムについては解析の余地を残している。将来の研究ではトレーサー粒子を導入した Lagragian 解析を行うことによって、流体要素が経験する反応流れ場を高精度に理論解析することを目指す。

3. 不均一混合気の中を伝播するデトネーション:二段式軽ガス銃を用いたハイスピード可 視化実験

実験では、不均一混合気の効果を調べることを目的とした。実験装置は共同研究者である 埼玉大学熱工学研究室の前田慎市准教授が所有する二段式軽ガス銃(図 3)、および ULTRA CAM HS-106E (NAC)を中心としたシュリーレン撮影系を用いた^{5,9)}。本成果は学術雑誌 Physics of Fluids に投稿中である。

軽ガス銃によって 2000-2300 m/s の発射速度で 9.52 mm 球体の発射を行い、テストチャン バーに充填された H₂/O₂-3Ar 混合気を通過することで、球体まわりに斜めデトネーション(固 体に対し静止したデトネーション)が形成される。テストチャンバーはスパン方向にΦ141 mm の BK7 ガラスを通した可視化セクションを設け、上記のハイスピードカメラ HS-106E を 用いて 500,000 fps の高速撮影を行った。露光時間は 300 ns, 解像度は 412 x 360 とした。

不均一混合気を作成するために、図4に示すような水素インジェクターをテストチャンバー上部に導入した。テストチャンバーには初期状態では酸化剤 O₂+3Ar のみを充填しておき、続いて上部から水素噴射を行い、所定の総括当量比 Φ, 最終圧力 70 kPa となったところで供給を停止する。その後、球体の発射を行うまでの待機時間 tw を設定することによって、デトネーションが形成される濃度勾配の強さを設定する。これにより tw の増加とともに均一混合気へと漸近していくことになる。

図 3. 二段式軽ガス銃の構成

図 4. 不均一混合気生成用の水素インジェクター

図 5、6には高速シュリーレン撮影によって得られた、球体まわりの斜めデトネーションの 構造をそれぞれ総括当量比 Φ =0.7, 2.0 に対して示す。 Φ =0.7 に関し、均一混合気中であれば、 球体に対して上下対称に直線形状の斜めデトネーションが得られる。 Φ =0.7 t_w =20 s(図 5 左)で は濃度勾配が弱く、この状況に近いのに対し、 t_w を短く設定するほど非対称性は強まり、デト ネーション面は曲率を顕著にする。それとともに、燃料濃度の薄い下側では衝撃波面と火炎面 が完全に離れデトネーションが消失する。最も強い濃度勾配 t_w = 3s では球体上でもデトネー ションが消失してしまっている。

その一方、 $\Phi=2.0$ では均一混合気では衝撃波・火炎が分離した振動燃焼形態となり、 $t_w=5-20$ sではこの通りとなっている。しかし最も強い濃度勾配($t_w=3s$ 、図 6 右)では、燃料濃度が量論値に近い球体下側でデトネーションが発生する傾向が得られた。

このような濃度勾配によって均一混合気中と全く異なる構造が得られるというのは、ほとん ど考えられてこなかった現象である。そのため、たとえエンジン内の総括当量比が1に近くデ トネーションが維持されやすい条件であっても、濃度分布によってはデトネーションが生じえ ない領域ができることを意味し、その逆も起りうるということである。つまり濃度勾配の制御 を行うことによって、デトネーションの発生をうまくコントロールできる余地を示しており、 デトネーションを安定させてエンジン性能を向上させる、新たな指針につながりうる。

図 5 総括当量比 Ø=0.7、各待機時間 twにおける不均一混合気中斜めデトネーション

図 6 総括当量比 Ø=0.7、各待機時間 twにおける不均一混合気中斜めデトネーション

4. デフラグレーション-デトネーション遷移の問題への発展 :等容燃焼容器を用いた基礎 的実験検討

前章までの課題では定常的なデトネーションを基準としたものだったが、発展的課題として 現在、亜音速燃焼(デフラグレーション)からデトネーションに至る遷移現象(Deflagration-to-Detonation Transition, DDT)を取り上げ、不均一混合・乱流場の影響の調査へ向けて研究を行っ ている。このような DDT はエンジンの始動や再始動に関わる重要な現象である。

図7に実験装置のセットアップを示す。一辺100mmの立方体体積を有する等容燃焼容器を 製作し、Φ70mmアクリルガラスによる可視化セクションを設けた。可視化は前章と同様、シ ュリーレン撮影によって行った。燃焼容器中心部には対向する点火電極を有し、球状火炎伝播 を観察できるようになっている。壁面には圧力センサ123B24 (PCB)を設け、燃焼圧履歴を計 測可能にしている。

図7DDT可視化実験装置セットアップ

現在は不均一場・乱流場の導入にあたって基準となる、静止均一混合気を対象にした燃焼可 視化実験を行っている。図8ではΦ=0.5,初期圧1.0 MPaでのシュリーレン撮影結果の例を示 している。静止均一混合気では先行研究¹⁰⁾と異なり、DDTは得られなかった。そのため不均 一場、乱流場、および固体障害物など付加的な要素による影響を慎重に考える必要があり、こ れからの課題とする。

図8 Φ=0.5, 初期圧 1.0 MPa の火炎伝播のシュリーレン写真

9. まとめ

本研究では、乱流場および不均一混合場によるデトネーション物理の変化を調べ、セル構造の崩壊など新規の現象が得られ、エンジン性能への影響解析のための重要な知見が得られた。 今後は DDT に対する不均一混合や乱流場の影響を考えていく。

謝辞

本研究を遂行するにあたり、天野工業技術研究所から多大なご支援を頂きました。ここに記して謝意を示します。

参考文献

 P. Wolanski, "Detonative Propulsion," Proceedings of the Combustion Institute, Vol. 34, pp. 125 158 (2013).

- A. Kawasaki et al., "Flight demonstration of detonation engine system using sounding rocket s-520-31: System design," in: AIAA SciTech 2022 Forum, pp. 0229 (2022).
- 3) 岩田和也ほか、"JAXA における回転デトネーションロケットエンジンの基礎的波面現象の解明 および性能実証への取り組み"、日本燃焼学会誌、Vol. 62, pp. 94-102 (2020).
- K. Iwata et al., "Wedge-stabilized oblique detonation in an inhomogeneous hydrogenair mixture," Proceedings of the Combustion Institute, Vol. 36, pp. 2761-2769 (2017).
- 5) K. Iwata et al., "Experimental visualization of sphere-induced oblique detonation in a non-uniform mixture," Combustion and Flame Vol. 244, 112253 (2022).
- S. Suzuki et al., "A DNS study of detonation in H2/02 mixture with variable turbulent intensities," Proceedings of the Combustion Institute, in press (2024).
- G. Jiang, and C.-W. Shu, "Efficient Implementation of Weighted ENO Schemes," Journal of Computational Physics, Vol. 126, pp. 202-228 (1996).
- M. O. Conaire et al., "A comprehensive modeling study of hydrogen oxidation," International Journal of Chemical Kinetics, Vol. 36, pp. 603-622 (2004).
- 9) S. Maeda et al., "Experimental study on acceleration of projectile by a gaseous detonation-driven gas gun using a light gas," Science and technology of energetic materials Vol. 77, pp. 79-85 (2016).
- 10) Y.B. Zel' dovich, and A.I. Rozlovskii, "On the onset of unstable normal burning: transition of a spherical flame to detonation," Doklady Akademii Nauk SSSR Vol. 57, pp. 365-368 (1947, in Russian).